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These notes are meant to be a summary of important points covered in the Honors Physics class at Mt. Lebanon High
School. They are not meant to be a replacement for your own notes that you take in class, nor are they a replacement for
your textbook. Much of the material in here is taken from the textbook without specifically acknowledging each case, in
particular the organization and overall structure exactly match the 2002 edition of Holt Physics by Serway and Faughn
and many of the expressions of the ideas come from there as well.

The mixed review exercises were taken from the supplementary materials provided with the textbook. They are a
representative sampling of the type of mathematical problems you may see on the final exam for the course. There will
also be conceptual questions on the exam that may not be covered by the exercises included here. These exercises are
provided to help you to review material that has not been seen in some time, they are not meant to be your only resource
for studying. Exercises are included from chapters 1-8, 12-17, and 19-22.

The answers at the end of the review are taken from the textbook, often without verifying that they are correct. Use
them to help you to solve the problems but do not accept them as correct without verifying them yourself.

This is a work in progress and will be changing and expanding over time. I have attempted to verify the correctness
of the information presented here, but the final responsibility there is yours. Before relying on the information in these
notes please verify it against other sources.

Honors Physics 2008-2009 Mr. Strong



Chapter 1 — The Science of Physics

1.1 What is Physics?

Some major areas of Physics:

Mechanics — motion and its causes — falling objects,
friction, weight

Thermodynamics — heat and temperature — melting
and freezing processes, engines, refrigerators

Vibrations and Waves — specific types of repeating
motions — springs, pendulums, sound

Optics — light — mirrors, lenses, color

Electromagnetism — electricity, magnetism, and light
— electrical charge, circuitry, magnets

Relativity — particles moving at very high speeds — par-
ticle accelerators, particle collisions, nuclear energy

Quantum Mechanics — behavior of sub-microscopic
particles — the atom and its parts

The steps of the Scientific Method

1. Make observations and collect data that lead to a
question

2. Formulate and objectively test hypotheses by experi-
ments (sometimes listed as 2 steps)

3. Interpret results and revise the hypotheses if neces-
sary

4. State conclusions in a form that can be evaluated by
others

1.2 Measurements in Experiments

Measurements

There are 7 basic dimensions in SI (Systéme International),
the 3 we will use most often are:

e Length — meter (m) — was 1,/10,000,000 of the dis-
tance from the equator to the North Pole — now the
distance traveled by light in 3.3 x 1079 s

e Mass — kilogram (kg) — was the mass of 0.001 cubic
meters of water, now the mass of a specific platinum-
iridium cylinder

e Time — second (s) — was a fraction of a mean so-
lar day, now 9,162,631,700 times the period of a radio
wave emitted by a Cesium-133 atom

Common SI Prefixes

Accuracy vs. Precision

e Accuracy describes how close a measured value is to
the true value of the quantity being measured

Problems with accuracy are due to error. To avoid
error:

— Take repeated measurements to be certain that
they are consistent (avoid human error)

— Take each measurement in the same way (avoid
method error)

— Be sure to use measuring equipment in good
working order (avoid instrument error)

e Precision refers to the degree of exactness with which
a measurement is made and stated.

— 1.325 m is more precise than 1.3 m

— lack of precision is usually a result of the limi-
tations of the measuring instrument, not human
error or lack of calibration

— You can estimate where divisions would fall be-
tween the marked divisions to increase the pre-
cision of the measurement

1.3 The Language of Physics

There are many symbols that will be used in this class, some
of the more common will be:

Symbol Meaning
Az Change in z
x;, xy  Initial, final values of x

>F Sumofall F

Dimensional analysis provides a way of checking to
see if an equation has been set up correctly. If the units re-

Prefix ~ Multiple ~Abbrev. sulting from the calculation are not those that are expected

then it’s very unlikely that the numbers will be correct ei-

nano-  107° n deci- 107" d ther. Order of magnitude estimates provide a quick

micro- 107,6 H kilo- 10° k way to evaluate the appropriateness of an answer — if the

milli- 1073 m mega- 10° M estimate doesn’t match the answer then there’s an error
centi- 1072 c giga- 107 G somewhere.
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Counting Significant Figures in a Number

Rule Example

All counted numbers have an infinite number
of significant figures

All mathematical constants have an infinite
number of significant figures

All nonzero digits are significant

1/2, m, e

Always count zeros between nonzero digits
Never count leading zeros

Only count trailing zeros if the number con-
tains a decimal point

For numbers in scientific notation apply the
above rules to the mantissa (ignore the expo-
nent)

10 items, 3 measurements

42 has two significant figures; 5.236 has four
20.08 has four significant figures; 0.00100409 has six
042 and 0.042 both have two significant figures

4200 and 420000 both have two significant figures; 420.
has three; 420.00 has five

4.2010 x 10?8 has five significant figures

Counting Significant Figures in a Calculation

Rule

Example

When adding or subtracting numbers, find the number which is known
to the fewest decimal places, then round the result to that decimal
place.

When multiplying or dividing numbers, find the number with the fewest
significant figures, then round the result to that many significant fig-
ures.

When raising a number to some power count the number’s significant
figures, then round the result to that many significant figures.

Mathematical constants do not influence the precision of any compu-
tation.

In order to avoid introducing errors during multi-step calculations, keep
extra significant figures for intermediate results then round properly
when you reach the final result.

21.398 + 405 — 2.9 = 423 (3
significant figures, rounded
to the ones position)

0.049623 x 32.0/478.8 =
0.00332 (3 significant figures)

5.82 =
figures)
2 x m x 4.00 = 25.1 (3 signif-
icant figures)

34 (2 significant

Rules for Rounding

Rule

Example

If the hundredths digit is 0 through 4 drop it and all following digits.

If the hundredths digit is 6 though 9 round the tenths digit up to the
next higher value.

If the hundredths digit is a 5 followed by other non-zero digits then
round the tenths digit up to the next higher value.

If the hundredths digit is a 5 not followed by any non-zero digits then
if the tenths digit is even round down, if it is odd then round up.

1.334 becomes 1.3
1.374 becomes 1.4

1.351 becomes 1.4

1.350 becomes 1.4, 1.250 be-
comes 1.2

(assume that the result was to be rounded to the nearest 0.1, for other precisions adjust accordingly)
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Chapter 2 — Motion in One Dimension

2.1 Displacement and Velocity

The displacement of an object is the straight line (vector)
drawn from the object’s initial position to its new position.
Displacement is independent of the path taken and is not
necessarily the same as the distance traveled. Mathemati-
cally, displacement is:

Ax =xp — x;

The average velocity, equal to the constant velocity
necessary to cover the given displacement in a certain time
interval, is the displacement divided by the time interval
during which the displacement occurred, measured in 7

Ax  zp—ua
v = -_—
WAty —ty

The instantaneous velocity of an object is equivalent
to the slope of a tangent line to a graph of x vs. t at the
time of interest.

The area under a graph of instantaneous velocity vs.
time (v vs. t) is the displacement of the object during that
time interval.

2.2 Acceleration

The average acceleration of an object is the rate of
change of its velocity, measured in . Mathematically, it
is:
Av vy —w;
favg = A ty —t

Like velocity, acceleration has both magnitude and di-
rection. The speed of an object can increase or decrease
with either positive or negative acceleration, depending on
the direction of the velocity — negative acceleration does
not always mean decrease in speed.

The instantaneous acceleration of an object is equiv-
alent to the slope of a tangent line to the v vs. ¢ graph at
the time of interest, while the area under a graph of instan-
taneous acceleration vs. time (a vs. t) is the velocity of
the object. In this class acceleration will almost always be
constant in any problem.

Displacement and velocity with constant uniform accel-
eration can be expressed mathematically as any of:

vy = v; + alt
1 2
Az = v; At + iaAt
1
Az = —(v; +vy)At

2
v} = v} +2aAz

2.3 Falling Objects

In the absence of air resistance all objects dropped near the
surface of a planet fall with effectively the same constant
acceleration — called free fall. That acceleration is always
directed downward, so in the customary frame of reference
it is negative, so:

ag =g =-9.81 ?2

Honors Physics

2008-2009

Mr. Strong



Chapter 3 — Two-Dimensional Motion and Vectors

3.1 Introduction to Vectors

Vectors can be added graphically.
Vectors can be added in any order:

Vit Vo=V + W
To subtract a vector you add its opposite:
Vi-Va=Vi+ (*‘72)

Multiplying a vector by a scalar results in a vector in
same direction as the original vector with a magnitude equal
to the original magnitude multiplied by the scalar.

3.2 Vector Operations

To add two perpendicular vectors use the Pythagorean The-
orem to find the resultant magnitude and the inverse of the

tangent function to find the direction: V,. =, /V;2 + V;2 and

the direction of V,., 6, is tan™" %

Just as 2 perpendicular vectors can be added, any vector
can be broken into two perpendicular component vectors:
V= 17; + Vy where \7}; = V cos 07 and Vy = Vsin6j;

Two vectors with the same direction can be added by
adding their magnitudes, the resultant vector will have the
same direction as the vectors that were added.

Any two (or more) vectors can be added by first decom-
posing them into component vectors, adding all of the = and
y components together, and then adding the two remaining
perpendicular vectors as described above.

3.3 Projectile Motion

The equations of motion introduced in chapter 2 are ac-
tually vector equations. Once the new symbol for displace-
ment, d= Axi+Ayj has been introduced the most common
ones can be rewritten as

o 1
d=T;At + gc_iAt2

Uf = U; + aAt

Since motion in each direction is independent of motion in
the other, objects moving in two dimensions are easier to
analyze if each dimension is considered separately.

- 1
d, = Ty At + idmAtQ

-

1
d, = Uy At + iayAtz

In the specific case of projectile motion there is no
acceleration in the horizontal (7) direction (@, = 0) and
the acceleration in the vertical (j) direction is constant
(@y = dy = g = —9.81 7). While v, will change over time,
U, remains constant. Neglecting air resistance, the path fol-
lowed by an object in projectile motion is a parabola. The
following equations use these simplifications to describe the
motion of a projectile launched with speed ¥; and direction
0 up from horizontal:

U, = v; cos 07 = constant

Uy; = v;5in0)

—

d, = v; cos OAtL
. ) o1,
dy = v sinAL) + igAt

To solve a projectile motion problem use one part of the
problem to find At, then once you know At you can use
that to solve the rest of the problem. In almost every case
this will involve using the vertical part of the problem to
find At which will then let you solve the horizontal part
but there may be some problems where the opposite ap-
proach will be necessary. For the special case of a projectile
launched on a level surface the range can be found with

v2 sin 20

Qg

r =
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Chapter 4 — Forces and the Laws of Motion

4.1 Changes in Motion

Force causes change in velocity. It can cause a station-
ary object to move or a moving object to stop or otherwise
change its motion.

The unit of force is the newton (N), equivalent to kgs'zm,
which is defined as the amount of force that, when acting
on a 1 kg mass, produces an acceleration of 1.

Contact forces act between any objects that are in
physical contact with each other, while field forces act
over a distance.

A force diagram is a diagram showing all of the forces
acting on the objects in a system.

A free-body diagram is a diagram showing all of the
forces acting on a single object isolated from its surround-
ings.

4.2 Newton's First Law

Newton’s first law states that

An object at rest remains at rest, and an ob-
ject in motion continues in motion with constant
velocity (that is, constant speed in a straight
line) unless the object experiences a net exter-
nal force.

This tendency of an object to not accelerate is called
inertia. Another way of stating the first law is that if the
net external force on an object is zero, then the acceleration
of that object is also zero. Mathematically this is

Y F=0—d=0

An object experiencing no net external force is said to
be in equilibrium, if it is also at rest then it is in static
equilibrium

4.3 Newton's Second and Third Laws
Newton’s second law states that

The acceleration of an object is directly pro-
portional to the net external force acting on the
object and inversely proportional to the object’s
mass.

Mathematically this can be stated as:
S F = ma

Which in the case of no net external force (3> F = 0) also
illustrates the first law:

Zﬁ:0—>m5:0—>5:0

Newton’s third law states that

If two objects interact, the magnitude of the
force exerted on object 1 by object 2 is equal to
the magnitude of the force simultaneously ex-
erted on object 2 by object 1, and these two
forces are opposite in direction.

Mathematically, this can be stated as:
Fio=—-Fy;

The two equal but opposite forces form an action-reaction
pair.

4.4 Everyday Forces

—

The weight of an object (Fy) is the gravitational force ex-
erted on the object by the Earth. Mathematically:

ﬁq = mg where § = —9.81%5’
‘ s

—

The normal force (F,,) is the force exerted on an object
by the surface upon which the object rests. This force is
always perpendicular to the surface at the point of contact.

The force of static friction (F,) is the force that op-
poses motion before an object begins to move, it will pre-
vent motion so long as it has a magnitude greater than the
applied force in the direction of motion. The maximum
magnitude of the force of static friction is the product of
the magnitude of the normal force times the coefficient
of static friction (u,) and its direction is opposite the
direction of motion:

Ee,maac

Fy,

— Fs,max = psky

Hs =

The force of kinetic friction (F}) is the force that op-
poses the motion of an object that is sliding against a sur-
face. The magnitude of the force of kinetic friction is the
product of the magnitude of the normal force times the
coefficient of kinetic friction (u;) and its direction is
opposite the direction of motion:

F,
F7n—>Fk:,Uan

Mk =
The force of friction between two solid objects depends
only on the normal force and the coefficient of friction, it
is independent of the the surface area in contact between
them.
For an object at rest with a force applied to it the fric-
tional force will vary as the applied force is increased.

Honors Physics

2008-2009

Mr. Strong



Ff’riction
/J/an /\K
Fi, = ui F,
Man k fhk=n
Fy = Fopp
Fapp
static wsFhn kinetic

Air resistance (ﬁR) is the force that opposes the mo-
tion of an object though a fluid. For small speeds Fg oc v
while for large speeds Fr o v?. (Exactly what is small or
large depends on things that are outside the scope of this
class.) Air resistance is what will cause falling objects to
eventually reach a terminal speed where Fr = Fj,.

Solving Friction Problems

When solving friction problems start by drawing a diagram
of the system being sure to include the gravitational force
(Fy), normal force (F,), frictional force (Fy, Fs, or Fs max)
and any applied force(s).

Determine an appropriate frame of reference, rotating
the x and y coordinate axes if that is convenient for the
problem (such as an object on an inclined plane). Resolve
any vectors not lying along the coordinate axes into com-
ponents.

Use Newton's second law (3 F = md) to find the rela-
tionship between the acceleration of the object (often zero)
and the applied forces, bettlng up equations in both the
and y directions (3. F, = md, and ZFy = md,) to solve
for any unknown quantities.
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Chapter 5 — Work and Energy
5.1 Work

A force that causes a displacement of an object does work
(W) on the object. The work is equal to the product of the
distance that the object is displaced times the component of
the force in the direction of the displacement, or if 8 is the
angle between the displacement vector and the (constant)
net applied force vector, then:

W = F,etd cosf

The units of work are Joules (J) which are equivalent
to N-m or kgs‘énz. The sign of the work being done is sig-

nificant, it is possible to do a negative amount of work.

5.2 Energy

Work done to change the speed of an object will accumu-
late as the kinetic energy (KE, or sometimes K) of the
object. Kinetic energy is:

1

KE = —mu?
2
If work is being done on an object, the work-kinetic

energy theorem shows that:

Whet = AKE

In addition to kinetic energy, there is also potential
energy (PE, or sometimes U) which is the energy stored
in an object because of its position. If the energy is stored
by lifting the object to some height h, then the equation for
gravitational potential energy is:

PE, = mgh

Potential energy can also be stored in a compressed
or stretched spring, if x is the distance that a spring is
stretched from its rest position and k is the spring con-
stant measuring the stiffness of the spring (in newtons per
meter) then the elastic potential energy that is stored
is:

PEelastic = lkx2
2

The units for all types of energy are the same as those
for work, Joules.

5.3 Conservation of Energy

The sum an objects kinetic energy and potential energy is
the object’s mechanical energy (MFE). In the absence of
friction, the total mechanical energy of a system will remain
the same. Mathematically, this can be expressed as:

ME,; = ME;

In the case of a single object in motion, this becomes:

1 1
imvf + mgh; = imvﬁ +mghy

5.4 Power

The rate at which energy is transferred is called power (P).
The mathematical expression for power is:

W _Fd_d_ .
At At At
The units for power are Watts (W) which are equivalent

J kg-m?

to £ or =3
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Chapter 6 — Momentum and Collisions

6.1 Momentum and Impulse

Momentum is a vector quantity described by the product
of an object’s mass times its velocity:

p=mi
If an object’s momentum is known its kinetic energy can
be found as follows:

p2

KFE =
2m

The change in the momentum of an object is equal to
the impulse delivered to the object. The impulse is equal
to the constant net external force acting on the object times
the time over which the force acts:

Ap = FAt

Any force acting on on object will cause an impulse,
including frictional and gravitational forces.

In one dimension the slope of a graph of the momen-
tum of an object vs. time is the net external force acting
on the object. The area under a graph of the net external
force acting on an object vs. time is the total change in
momentum of that object.

Momentum and impulse are measured in kng — there
is no special name for that unit.

6.2 Conservation of Momentum
Momemtum is always conserved in any closed system:
Yp; = Xpy
For two objects, this becomes:
myU1; + Mol = MUy + malay

Any time two objects interact, the change in momen-
tum of one object is equal in magnitude and opposite in
direction to the change in momentum of the other object:

Ap) = —Aps

6.3 Elastic and Inelastic Collisions

There are three types of collisions:

e Elastic — momentum and kinetic energy are con-
served. Both objects return to their original shape
and move away separately. Generally:

¥p; = Xpy

SKE; = SKE;

For two objects:
m1U1; + MaUs; = myvif + mavaf

1 2 2 _
—Mmyvy; + s Movy; =

2 1 2
5 5 M1V + MoV

2 2

e Inelastic — momentum is conserved, kinetic energy
is lost. One or more of the objects is deformed in the
collision. Generally:

Sp = Spy
SKE; > SKE;

For two objects:
m1v1; + MoV = M1V1f + Moy

lmlv% + —m2v§‘ > 1mlvff + 1mgvgf
2 b2 T2 2 !

e Perfectly inelastic — momentum is conserved, ki-
netic energy is lost. One or more objects may be
deformed and the objects stick together after the col-
lision. Generally:

S5 = Sy
SKE; > SKE;

For two objects:

—

my; + mata; = (my + M)V

1 1
§m1vfi + §m2v§i > §(m1 + mg)vfz

True elastic or perfectly inelastic collisions are very rare
in the real world. If we ignore friction and other small en-
ergy losses many collisions may be modeled by them.

Newton's Laws in terms of Momentum

1. Inertia:
YF =0 — p = constant

2. F =ma:
Ap = FAt

3. Every action has an equal and opposite reaction:

Ap1 = —Aps
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Chapter 7 — Rotational Motion and the Law of Gravity
7.1 Measuring Ratational Motion 7.2 Tangential and Centripetal Acceleration

In addition to the angular speed of an object moving with
circular motion it is also possible to measure the object’s
tangential speed (v;) or instantaneous linear speed which
s is measured in 2 as follows:

o=" B
.

For an object moving in a circle with radius r through an
arc length of s, the angle 0 (in radians) swept by the object
is:

v = TW
The conversion between radians and degrees is:
An object’s tangential acceleration (a;) can also be

O(rad) = 1;)09(deg) measured, in 3, as follows:
a; =ra

The angular displacement (A#) through which an !
object moves from 6; to 6y is, in rad: The centripetal acceleration (a.) of an object is di-
rected toward the center of the object’s rotation and has

A =0, -0, = 4 % _ As the following magnitude:
. r T
d ac = ﬁ = rw?
The average angular speed (w) of an object is, in ™%, cT

the ratio between the angular displacement and the time . .
interval required for that displacement: 7.3 Causes of Circular Motion

The centripetal force (F.) causing a centripetal accel-
eration is also directed toward the center of the object’s
rotation, and has the following magnitude:

C0,—0, A9
Wavg = Ay T At

The average angular acceleration (a) is, in 2d: 2
) S v

F.=ma. = m _ mrw?
wr—w;  Aw "
Qavg = At AL The centripetal force keeping planets in orbit is a grav-
itational force (F}) and it is found with Newton’s Univer-
For each quantity or relationship in linear motion there gsa]l Law of Gravitation:

is a corresponding quantity or relationship in angular mo-
tion: Fo=G

mims
2

r

where G is the constant of universal gravitation which

Li Angul
mear netar has been determined experimentally to be
x 0
N - m?
v w G =6.673x 10711
kg
a !
vp = v; +alt wf = w; +alt An object in a circular orbit around the Earth will sat-
Ax = v; At + %aAtQ A = w; At + %aAtz isfy the equation
UJ% = v? + 2aAz w? = w? + 2aAf v = GMg
r

Az =4 (v; +vp)At A0 = L (w; +wyp)At
where Mpg is the mass of the Earth.
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Chapter 8 — Rotational Equilibrium and Dynamics

8.1 Torque

Just as a net external force acting on an object causes linear
acceleration, a net torque (7) causes angular acceleration.
The torque caused by a force acting on an object is:

T=rFsinf

where F' is the force causing the torque, r is the distance
from the center to the point where the force acts on the
object, and @ is the angle between the force and a radial
line from the object’s center through the point where the
force is acting. Torque is measured in N - m.

The convention used by the book is that torque in a
counterclockwise direction is positive and torque in a clock-
wise direction is negative (this corresponds to the right-
hand rule). If more that one force is acting on an object
the torques from each force can be added to find the net

torque:
Tnet = E T

8.2 Rotation and Inertia

The center of mass of an object is the point at which all
the mass of the object can be said to be concentrated. If
the object rotates freely it will rotate about the center of
mass.

The center of gravity of an object is the point through
which a gravitational force acts on the object. For most
objects the center of mass and center of gravity will be the
same point.

The moment of inertia (I) of an object is the object’s
resistance to changes in rotational motion about some axis.
Moment of inertia in rotational motion is analogous to mass
in translational motion.

Some moments of inertia for various common shapes are:

Shape I
Point mass at a distance r from the axis mr?
Solid disk or cylinder of radius r about %mr2
the axis

Solid sphere of radius r about its diameter %mrQ
Thin spherical shell of radius r about its %mrQ
diameter

Thin hoop of radius r about the axis mr?
Thin hoop of radius r about the diameter %er
Thin rod of length [ about its center %le
Thin rod of length [ about its end %ml2

An object is said to be in rotational equilibrium when
there is no net torque acting on the object. If there is also

no net force acting on the object (translational equilib-
rium) then the object is in equilibrium (without any qual-
ifying terms).

Type Equation Meaning

Translational > F=0 The net force on the ob-
Equilibrium ject is zero

Rotational Equi- > 7=0 The net torque on the
librium object is zero

8.3 Rotational Dynamics

Newton’s second law can be restated for angular motion as:
Tnet = Lo

This is parallel to the equation for translational motion
as follows:

Type of Motion Equation
Translational F=ma
Rotational T=1I«

Just as moment of inertia was analogous to mass, the
angular momentum (L) in rotational motion is analogous
to the momentum of an object in translational motion.

This is parallel to the equation for translational motion
as follows:

Type of Motion Equation
Translational p=muv
Rotational L=1Iw

The angular momemtum of an object is conserved in the
absence of an external force or torque.
Rotating objects have rotational kinetic energy ac-
cording to the following equation:
1 L?
KE, = —Iuw* = —
"2 21
Just as other types of mechanical energy may be con-
served, rotational kinetic energy is also conserved in the
absence of friction.

8.4 Simple Machines

There are six fundamental types of machines, called sim-
ple machines, with which any other machine can be con-
structed. They are levers, inclined planes, wheels, wedges,
pulleys, and screws.

The main purpose of a machine is to magnify the output
force of the machine compared to the input force, the ratio
of these forces is called the mechanical advantage (MA)
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of the machine. It is a unitless number according to the
following equation:

Fout

Fin

When frictional forces are accounted for, some of the
output force is lost, causing less work to be done by the
machine than by the original force. The ratio of work done
by the machine to work put in to the machine is called the
efficiency (eff) of the machine:

Wo ut
Wi

output force

input force

eff =

If a machine is perfectly efficient (eff = 1) then the ideal
mechanical advantage (IMA) can be found by comparing
the input and output distances:

din

IMA =
dout

This leads to another way to find the efficiency of the
machine as well:

MA

“f = hia
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Variables and Notation

S| Prefixes Notation
Prefix  Mult. Abb. Prefix Mult. Abb. Notation Description
yocto- 10724 y yotta-  10% Y z Vector
zepto- 10721 Z zetta- 102! 7 T Scalar, or the magnitude of ¥
atto- 1018 a exa- 108 E |2 The absolute value or magnitude of ¥
femto- 1071!° f peta-  10'° P Ax Change in z
pico-  1071!2 p tera-  10'2 T Sa Sum of all =
nano- 1079 n giga- 10° G Iz Product of all x
micro- 1076 W mega- 108 M T; Initial value of x
milli- 1073 m kilo- 103 k Tf Final value of z
centi- 1072 c hecto- 102 h T Unit vector in the direction of z
deci- 1071 d deka- 10! da A— B A implies B
Ax B A is proportional to B
A> B  Aismuch larger than B
Units
Symbol Unit Quantity Composition
kg kilogram Mass SI base unit
m meter Length SI base unit
s second Time SI base unit
A ampere Electric current SI base unit Greek Alphabet
cd candela  Luminous intensity  SI base unit . . .
K kelvin Temperature SI base unit Name  Maj.  Min. Name Mayj. Min
mol mole Amount ST base unit Alpha A o Nu N y
Beta B 1] Xi = &
e \% m? -k
Q ohm Resistance A or TAQg Gamma r v OmiCI‘On O o
C coulomb Charge A-s Delta A B Pi I 7rorw
4 2
F farad Capacitance % or fnz'ig Epsilon E €or e Rho P por o
Vs . mikg Zeta Z ¢ Sigma by oorg
H henry Inductance A Or iy g Fta H " Tau T -
Hz hertz Frequency st , Theta C) 0 or ¥ Upsilon T v
J joule Energy N.-m or kgs';“ Tota I L Phi ) ¢ or ¢
N newton Force ki'zm LKapé); IX I; ghl >\I§ X
rad radian Angle orl ambda ot ¥
i m Mu M 7 Omega Q w
T tesla Magnetic field T
\Y% volt Electric potential Zor r;‘j,:ig
W watt Power 3 or kgbj;?"Q
Wb weber Magnetic flux V-sor 1;5'21

Honors Physics 2008-2009 Mr. Strong
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Variables
Variable  Description Units Variable  Description Units
a Angular acceleration rad h Object height m
0 Angular position rad w Image height m
0. Critical angle © (degrees) I Current A
0; Incident angle ° (degrees) I Moment of inertia kg - m?
6, Refracted angle © (degrees) KE or K Kinetic energy J
o’ Reflected angle ° (degrees) KE ot Rotational kinetic energy J
A6 Angular displacement rad L Angular Momentum %
T Torque N-m L Self-inductance H
w Angular speed rad m Mass kg
1] Coefficient of friction (unitless) M Magnification (unitless)
1k Coeflicient of kinetic friction (unitless) M Mutual inductance H
Hs Coeflicient of static friction (unitless) MA Mechanical Advantage (unitless)
a Acceleration = ME Mechanical Energy J
Qe Centripetal acceleration = n Ind.ex of .refraction (unitless)
g Gravitational acceleration = 11 Object distance km
- . . " P Momentum i&m
ay Tangential acceleration = s
Ay Acceleration in the x direction = P Power W
. . o s PE or U Potential Energy J
Qy Acceleration in the y direction =z PE astie  Elastic potential energy J
A Area m? PFE giectric  Electrical potential energy J
B Magnetic field strength T PE, Gravitational potential energy J
c Capacitance F q Image distance m
d Displacement m gor Q@ Charge C
dsinf lever arm m Q Heat, Entropy J
d, or Az  Displacement in the x direction m R Radius of curvature m
d; or Ay Displacement in the y direction m R Resistance Q
E Electric field strength R $ Arc length m
f Focal length m ¢ Time S
F Force N At Time interval S
E, Centripetal force N v Velocity . 5
Fojeetrie  Electrical force N vt Tangential speed B
ﬁg Gravitational force N Uy Velocity in the x direction =
B K Kinetic frictional force N Ty Velocity in the y direction 5
ﬁmagnetic Magnetic force N 1% Electric potential \Y
F, Normal force N AV Electric potential difference v
F, Static frictional force N 4 Volume m®
FAt Impulse N-sor kng w ]\;,ijk. J
g Gravitational acceleration = rory osition m
Honors Physics 2008-2009 Mr. Strong
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Constants
Symbol Name Established Value Value Used
€  Permittivity of a vacuum 8.854 187 817 x 10712 (& 885x 10712 (&,
10} Golden ratio 1.618 033 988 749 894 848 20
T Archimedes’ constant 3.141 592 653 589 793 238 46
g, g Gravitational acceleration constant 9.79171 3 (varies by location) 9.81 3
c Speed of light in a vacuum 2.997 924 58 x 10% 2 (exact)  3.00 x 10% 2
e Natural logarithmic base 2.718 281 828 459 045 235 36
e~ Elementary charge 1.602 177 33 x 10 C 1.60 x 10'° C
G Gravitational constant 6.672 59 x 10711 X 6.67 x 1011 N
ko Coulomb’s constant 8.987 551 788 x 109 Nn® 8.99 x 100 N’
Ny Avogadro’s constant 6.022 141 5 x 10?3 mol~!
Astronomical Data
Symbol  Object Mean Radius Mass Mean Orbit Radius  Orbital Period
D)) Moon 1.74 x 10 m  7.36 x 1022 kg 3.84 x 10® m 2.36 x 10° s
Q Sun 6.96 x 10 m  1.99 x 10%0 kg — —
¥ Mercury 243 x 105m  3.18 x 10® kg  5.79 x 10'° m 7.60 x 10° s
? Venus 6.06 x 105 m  4.88 x 10** kg 1.08 x 10' m 1.94 x 107 s
é Earth 6.37 x 105 m  5.98 x 10** kg  1.496 x 10! m 3.156 x 107 s
o Mars 3.37x10°m  6.42 x 102 kg 228 x 10! m 5.94 x 107 s
Ceres! 471 x10°m  9.5x102° kg  4.14 x 10" m 1.45 x 108 s
2% Jupiter  6.99 x 10" m  1.90 x 10?" kg 7.78 x 10" m 3.74 x 10% s
b Saturn 5.85x 10" m  5.68 x 10*6 kg 1.43 x 102 m 9.35 x 108 s
48 Uranus 2.33x10"m 8.68 x 10*® kg 2.87 x 102 m 2.64 x 10° s
L Neptune 2.21 x 10" m  1.03 x 10*6 kg 4.50 x 102 m 5.22 x 109 s
? Pluto? 1.15x10°m  1.31 x 102 kg 5.91 x 102 m 7.82 x 10% s
Eris?! 24x10m  1.5x1022kg 1.01 x 10" m 1.75 x 1010 g

1Ceres, Pluto, and Eris are classified as “Dwarf Planets” by the IAU
2Eris was formerly known as 2003 UB313
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Mathematics Review for Physics

This is a summary of the most important parts of math-
ematics as we will use them in a physics class. There are
numerous parts that are completely omitted, others are
greatly abridged. Do not assume that this is a complete
coverage of any of these topics.

Algebra

Fundamental properties of algebra

a+b=b+a Commutative law for ad-
dition
(a+b)+c=a+(b+c) Associative law for addi-
tion

a+0=0+a=a
a+(—a)=(-a)+a=0

Identity law for addition
Inverse law for addition

ab = ba Commutative law for
multiplication
(ab)c = a(be) Associative law for mul-
tiplication
(a)(1) =(1)(a) =a Identity law for multipli-
cation
a% = %a =1 Inverse law for multipli-
cation

a(b+c) = ab+ ac Distributive law

Exponents
(ab)™ = a™b" (a/b)™ =a™ /"
aa™ = a"*tm 0" =0
an/am =g m aO =1

(@)™ =al™m 00 =1 (by definition)

Logarithms

r=a¥ — y=log,x

log, (zy) = log, = + log, y

logy, =
~ log,a

= (logy, x)(log, b)

Binomial Expansions
(a+ b)* = a® + 2ab + b*
(a+b)3 = a® + 3a®b + 3ab® + b*

(a+b)" =Y — ( I

I(n —2)!
—il(n i)!

Quadratic formula

For equations of the form ax? +bx + ¢ = 0 the solutions are:

—b+ Vb?% — 4ac
r=—

2a

Geometry
Shape Area Volume
Triangle A= %bh —
Rectangle A=lw —
Circle A=qr? —
Rectangular A = 2(lw + lh + hw) V =lwh
prism
Sphere A = 472 = %777“3
Cylinder A =271rh + 2712 V =mr?h
Cone A=mrVr2+h2+7r?2 V= Ltar?h

Trigonometry

In physics only a small subset of what is covered in a
trigonometry class is likely to be used, in particular sine, co-
sine, and tangent are useful, as are their inverse functions.
As a reminder, the relationships between those functions
and the sides of a right triangle are summarized as follows:

. opp adj
sinf = — cost) = —~
hyp hyp hyp
opp .
tan 0 — opp _ sin 0
4 adj  cosf

adj

The inverse functions are only defined over a limited range.
The tan~—! x function will yield a value in the range —90° <
6 < 90°, sin"!z will be in —90° < 6 < 90°, and cos™ 'z
will yield one in 0° < # < 180°. Care must be taken to
ensure that the result given by a calculator is in the correct
quadrant, if it is not then an appropriate correction must
be made.

Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180°
Radians 0 % % g g %’T %’T %’T T
: 1 V2 V3 V3 /2 1
Sin O b 3 o 1 5 3 5 0
V3 V2 1 1 V2 _ V3
cos 1 %5 %5 3 0 -5 —%5 —%5 -1
tan 0 2 1 V3 0o —V3 -1 —¥3 0

sin?@ + cos? 6 = 1 2sin 6 cos 6 = sin(26)
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Trigonometric functions in terms of each other

L _ : — 2 tan @
sinf = sin 6 V1 —cos? 6 TTtienTo
_ 2 1
cosf = 1—sin“# cos 6 WiEE—
" T cos?
tanf = sin 6 L i 0 tan 6
\/lfsin2 [ cos
cscl = 1 v/1+tan? 0
sin 0 V1—cos2 6 tan 0
1 1 2
sect = —_ V14 tan® 6
\/1—sin2 6 cos §
cot § — \/1—sin2 6 cos 0 1
- sin 0 V1—cos2 6 tan 0
sinf = 1 /sec?2 6—1 1
- csc b sec O v 14cot2 0
cosf = Vcsc2 0—1 1 cot 0
- csc O sec V1+cot2 0
— 1 o2 ) _ 1
tand = NCT S Vsec?§ — 1 <id
_ sec 0 2
cscl = csch et 6T V1+ cot 6
_ csc v 1+cot? 6
sec = Teer o1 sec 6 Yoo
— 20 _ 1
cot = +Vesc?—1 N cot @

Law of sines, law of cosines, area of a triangle

2=b24+c®—2bccos A
C b? =a? + ¢ — 2accos B
a ® =a?+b%> —2abcosC
a b c
b B snA _ sinB _ sinC

let s=1(a+b+c)
Area= /s(s —a)(s — b)(s — ¢)

Area= %bcsinA = %acsinB = %absinC’

Vectors

A vector is a quantity with both magnitude and direction,
such as displacement or velocity. Your textbook indicates
a vector in bold-face type as V and in class we have been
using V. Both notations are equivalent.

A scalar is a quantity with only magnitude. This can
either be a quantity that is directionless such as time or
mass, or it can be the magnitude of a vector quantity such
as speed or distance traveled. Your textbook indicates a
scalar in italic type as V, in class we have not done any-
thing to distinguish a scalar quantity. The magnitude of 1%
is written as V or [V].

A unit vector is a vector with magnitude 1 (a dimen-
sionless constant) pointing in some significant direction. A
unit vector pointing in the direction of the vector V is in-
dicated as V and would commonly be called V-hat. Any
vector can be normalized into a unit vector by dividing it by
its magnitude, giving V = % Three special unit vectors, 2,
j, and k are introduced with chapter 3. They point in the
directions of the positive z, y, and z axes, respectively (as
shown below).

>

Y

Y

Vectors can be added to other vectors of the same di-
mension (i.e. a velocity vector can be added to another
velocity vector, but not to a force vector). The sum of all
vectors to be added is called the resultant and is equivalent
to all of the vectors combined.

Multiplying Vectors

Any vector can be multiplied by any scalar, this has the
effect of changing the magnitude of the vector but not its
direction (with the exception that multiplying a vector by
a negative scalar will reverse the direction of the vector).
As an example, multiplying a vector 1% by several scalars
would give:

1% 2V
_ > >
5V 1V
—_— -

In addition to scalar multiplication there are also two
ways to multiply vectors by other vectors. They will not be
directly used in class but being familiar with them may help
to understand how some physics equations are derived. The
ﬁrst the dot product of vectors V1 and Vg, represented as
Vi -V measures the tendency of the two vectors to point in
the same direction. If the angle between the two vectors is
0 the dot product yields a scalar value as

‘71 . ‘72 = V1 V5 cos 6

The second method of multlplymg two vectors, the
cross product, (represented as Vi x Vg) measures the ten-
dency of vectors to be perpendicular to each other. It yields
a third vector perpendicular to the two original vectors with
magnitude

“71 X ‘72| = Vl‘/vg sin 0

The direction of the cross product is perpendicular to the
two vectors being crossed and is found with the right-hand
rule — point the fingers of your right hand in the direction
of the first vector, curl them toward the second vector, and
the cross product will be in the direction of your thumb.

Adding Vectors Graphically

The sum of any number of vectors can be found by drawing
them head-to-tail to scale and in proper orientation then
drawing the resultant vector from the tail of the first vector
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to the point of the last one. If the vectors were drawn ac-
curately then the magnitude and direction of the resultant
can be measured with a ruler and protractor. In the ex-
zgnple below the vectors ‘71, ‘72, and ‘_/'3 are added to yield
V.

<!
<

2
-

Vi=Vi+Va+ Vs

Adding Parallel Vectors

Any number of parallel vectors can be directly added by
adding their magnitudes if one direction is chosen as pos-
itive and vectors in the opposite direction are assigned a
negative magnitude for the purposes of adding them. The
sum of the magnitudes will be the magnitude of the resul-
tant vector in the positive direction, if the sum is negative
then the resultant will point in the negative direction.

Adding Perpendicular Vectors

Perpendicular vectors can be added by drawing them as a
right triangle and then finding the magnitude and direction
of the hypotenuse (the resultant) through trigonometry and
the Pythagorean theorem. If 17} = Vm + Vy and Vx 1 Vy

then it works as follows:
y \

Since the two vectors to be added and the resultant form
a right triangle with the resultant as the hypotenuse the
Pythagorean theorem applies giving

V=V, = /V2+ V2

The angle # can be found by taking the inverse tangent of
the ratio between the magnitudes of the vertical and hori-
zontal vectors, thus

0 =tan~"t 2
an Vm

As was mentioned above, care must be taken to ensure that
the angle given by the calculator is in the appropriate quad-
rant for the problem, this can be checked by looking at the

diagram drawn to solve the problem and verifying that the
answer points in the direction expected, if not then make
an appropriate correction.

Resolving a Vector Into Components

Just two perpendicular vectors can be added to find a
single resultant, any single vector V' can be resolved into
two perpendicular component vectors V, and Vj, so that
V=V,+V,

<!
<u

0 0

As the vector and its components can be drawn as a
right triangle the ratios of the sides can be found with

i . . v, V,
trigonometry. Since sinf = ¥ and cosf = 3 it follows
that V, = Vcosf and V,, = Vsinf or in a vector form,
V, =V cos#i and Vy = Vsindj. (This is actually an appli-
cation of the dot product, V, = (I7 -1)i and Vy = (17 -7,
but it is not necessary to know that for this class)

Adding Any Two Vectors Algebraically

Only vectors with the same direction can be directly added,
so if vectors pointing in multiple directions must be added
they must first be broken down into their components, then
the components are added and resolved into a single resul-
tant vector — if in two dimensions ‘7,~ = ‘71 + ‘72 then

V, =V + Vs

V2 T

1z,
>

Once the sums of the component vectors in each direc-
tion have been found the resultant can be found from them
just as an other perpendicular vectors may be added. Since
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from the last figure I_/; = (17195 +‘72$) + (‘71y+\7éy) and it was
previously established that V, = V cos 07 and Vy = Vsin0)
it follows that

—

V. = (Vicosty + Vacosbs)i+ (Visinhy + Vasinbs) j

and

= \/(V1 cos By + V5 cos 02)2 + (Vi sinfy + Vo sin 92)2

with the direction of the resultant vector VM 0,-, being found
with
1 V1 sin 91 + V2 sin 92

v
-1y T 72 + ng = tan
Vi cos Oy + Vacos by

Vlz +‘/2:L’ B

0, = tan

Adding Any Number of Vectors Algebraically

For a total of n vectors V; being added with magnitudes V;
and directions 6; the magnitude and direction are:

I_/; = (i\/icos&) 14+ (iVisinﬂi)j
i=1 i=1

v, =

N 2 . 2
(Z V; cos 0¢> + <Z Vi sin 91‘)
i=1 i=1

(The figure shows only three vectors but this method will
work with any number of them so long as proper care is
taken to ensure that all angles are measured the same way
and that the resultant direction is in the proper quadrant.)

Calculus

Although this course is based on algebra and not calculus,
it is sometimes useful to know some of the properties of

Derivatives

The derivative of a function f(¢) with respect to t is a
function equal to the slope of a graph of f(t) vs. ¢ at every
point, assuming that slope exists. There are several ways
to indicate that derivative, including:

d
30

f'@)

f(t)
The first one from that list is unambiguous as to the in-
dependent variable, the others assume that there is only one

variable, or in the case of the third one that the derivative
is taken with respect to time. Some common derivatives

are: q
= tn—l
a "
—sint = cost
dt
d t int
— cost = —sin
dt
d
&et = et

If the function is a compound function then there are a
few useful rules to find its derivative:

%cf(t) = c%f(t) ¢ constant for all ¢
d d d
1) + 9] =TI + o)
d d d
&f(u) = &u@f(u)

Integrals

The integral, or antiderivative of a function f(t) with
respect to t is a function equal to the the area under a
graph of f(t) vs. t at every point plus a constant, assuming
that f(t) is continuous. Integrals can be either indefinite or
definite. An indefinite integral is indicated as:

/ F&)dt

while a definite integral would be indicated as

/a " fty e

to show that it is evaluated from ¢t = a to t = b, as in:

/:f(t)dtsz(t)dtlizi =/f(t) dt|t:b_/f(t)dt‘t:a

Some common integrals are:

derivatives and integrals. If you have not yet learned cal- N g+l
culus it is safe to skip this section. /t dt = nt 1 +C n#—1
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/t‘1 dt = Int 4+ C Series Expansions
Some functions are difficult to work with in their normal
/ sintdt = —cost + C forms, but once converted to their series expansion can be

manipulated easily. Some common series expansions are:
/costdt =sint+C

3 5 7 o0 2i+1
tdt = et mr —o— T T Nyt
/e dt=¢€"+C sinx = x 3!+5! 7!+ —ZO( 1) I
There are rules to reduce integrals of some compound -
functions to simpler forms (there is no general rule to reduce ) A . - 0
the integral of the product of two functions): T T T . P
cosx =1 §+E a-&- Z(—l) o0
/cf(t) dt = c/f(t) dt ¢ constant for all ¢ =0
/[f(t)+ (t)]dt:/f(t)dt+/ (t)dt em—1+x+£2+£3+£4+ _ixi
g g - ol T3l Al ~ 20!
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Physics Using Calculus

In our treatment of mechanics the majority of the equa-
tions that have been covered in the class have been either
approximations or special cases where the acceleration or
force applied have been held constant. This is required
because the class is based on algebra and to do otherwise
would require the use of calculus.

None of what is presented here is a required part of the
class, it is here to show how to handle cases outside the
usual approximations and simplifications. Feel free to skip
this section, none of it will appear as a required part of any
assignment or test in this class.

Notation

Because the letter ‘d’ is used as a part of the notation of
calculus the variable ‘r’ is often used to represent the posi-
tion vector of the object being studied. (Other authors use
‘s’ for the spatial position or generalize ‘x’ to two or more
dimensions.) In a vector form that would become 7 to give
both the magnitude and direction of the position. It is as-
sumed that the position, velocity, acceleration, etc. can be
expressed as a function of time as #(t), ¥(t), and d@(t) but
the dependency on time is usually implied and not shown
explicitly.

Translational Motion

Many situations will require an acceleration that is not con-
stant. Everything learned about translational motion so
far used the simplification that the acceleration remained
constant, with calculus we can let the acceleration be any
function of time.

Since velocity is the slope of a graph of position vs. time
at any point, and acceleration is the slope of velocity vs.
time these can be expressed mathematically as derivatives:

L dg

U= —T

dt
s
Tt T ae”

The reverse of this relationship is that the displacement
of an object is equal to the area under a velocity vs. time
graph and velocity is equal to the area under an accelera-
tion vs. time graph. Mathematically this can be expressed

as integrals:
U= / adt

F:/ﬁdt://ddtz

Using these relationships we can derive the main equa-
tions of motion that were introduced by starting with the

integral of a constant velocity d(t) = @ as

tf
/ adt = aAt+C
ti
The constant of integration, C', can be shown to be the ini-
tial velocity, ¥;, so the entire expression for the final velocity
becomes

Uf = U; + aAt
or

Uy (t) = U; + at
Similarly, integrating that expression with respect to time
gives an expression for position:

ty 1
/ (U; + at) dt = v; At + 5@’At2 +C
t;
Once again the constant of integration, C, can be shown to
be the initial position, 77, yielding an expression for position
vs. time

" T

Tr(t) =75 + Uit + iat

While calculus can be used to derive the algebraic forms
of the equations the reverse is not true. Algebra can han-
dle a subset of physics and only at the expense of needing
to remember separate equations for various special cases.
With calculus the few definitions shown above will suffice
to predict any linear motion.

Work and Power

The work done on an object is the integral of dot product of
the force applied with the path the object takes, integrated
as a contour integral over the path.

W:/ﬁ-df'
C

The power developed is the time rate of change of the
work done, or the derivative of the work with respect to
time.

d
P=—-W
dt

Momentum

Newton’s second law of motion changes from the familiar
F' = mda to the statement that the force applied to an object
is the time derivative of the object’s momentum.

d .
ar?

Similarly, the impulse delivered to an object is the in-
tegral of the force applied in the direction parallel to the

motion with respect to time.

Aﬁ:/ﬁdt

F’:
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Rotational Motion

The equations for rotational motion are very similar to
those for translational motion with appropriate variable
substitutions. First, the angular velocity is the time deriva-
tive of the angular position.

a0
dt
The angular acceleration is the time derivative of the an-

gular velocity or the second time derivative of the angular
position.

&:

ds 4%
dar A2

The angular velocity is also the integral of the angular
acceleration with respect to time.

@’:/d’dt

The angular position is the integral of the angular veloc-
ity with respect to time or the second integral of the angular
acceleration with respect to time.

5:/ﬁdt://&dt2

d:

The torque exerted on an object is the cross product of
the radius vector from the axis of rotation to the point of
action with the force applied.

T=rxF

The moment of inertia of any object is the integral of
the square of the distance from the axis of rotation to each
element of the mass over the entire mass of the object.

I:/rzdm

The torque applied to an object is the time derivative
of the object’s angular momentum.

d -
7T=—L

dt

The integral of the torque with respect to time is the
angular momentum of the object.

Z:/th
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Data Analysis

Comparative Measures

Percent Error

When experiments are conducted where there is a calcu-
lated result (or other known value) against which the ob-
served values will be compared the percent error between
the observed and calculated values can be found with

observed value — accepted value

x 100%

percent error =
accepted value

Percent Difference

When experiments involve a comparison between two ex-
perimentally determined values where neither is regarded
as correct then rather than the percent error the percent
difference can be calculated. Instead of dividing by the ac-
cepted value the difference is divided by the mean of the
values being compared. For any two values, a and b, the
percent difference is

—-b

a
_— 100%
Tatby| "

percent difference =

Dimensional Analysis and Units on Con-
stants

Consider a mass vibrating on the end of a spring. The equa-
tion relating the mass to the frequency on graph might look

something like
3.658

—1.62

This isn’t what we’re looking for, a first pass would be to
change the z and y variables into f and m for frequency
and mass, this would then give

3.658

m = 7

This is progress but there’s still a long way to go. Mass
is measured in kg and frequency is measured in s~!, since
these variables represent the entire measurement (includ-
ing the units) and not just the numeric portion they do not

—1.62

need to be labeled, but the constants in the equation do
need to have the correct units applied.

To find the units it helps to first re-write the equation
using just the units, letting some variable such as u (or uy,
ug, us, etc.) stand for the unknown units. The example
equation would then become

u
kg = 12—|—u2

(s7h)
Since any quantities being added or subtracted must have
the same units the equation can be split into two equations

kg = w1 and kg = usq

(S_1)2

The next step is to solve for u; and us, in this case us = kg
is immediately obvious, u; will take a bit more effort. A
first simplification yields

then multiplying both sides by s~2 gives
-2 — (M (g2
(") ke) = (5) 7
which finally simplifies and solves to

Uy :kg-sf2

Inserting the units into the original equation finally yields

3658 kg s
= p
which is the final equation with all of the units in place.
Checking by choosing a frequency and carrying out the cal-
culations in the equation will show that it is dimensionally

consistent and yields a result in the units for mass (kg) as
expected.

— 1.62 kg
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Midterm Exam Description

99 Multiple Choice Items (31 problems, 68 questions)
Calculators will not be permitted

Many test items contain numbers, but do not require calculations to solve. Before plugging values into an equation,
look at the possible responses. The correct response may be obvious due to significant figures, order of magnitude
or simple common sense.

Since all test items are worth one point, you should first complete the items that you are most sure of and then go
through the exam a second time. You should make sure that you answer every question on the exam.

Exam items are from the following categories:

— Chapter 1 — The Science of Physics
units of measurement
significant figures

— Chapter 2 — Motion in One Dimension
displacement and velocity
acceleration

falling objects
graphs of motion

— Chapter 3 — Two-Dimensional Motion and Vectors
vectors and vector operations
projectiles
relative motion

— Chapter 4 — Forces and the Laws of Motion
Newton’s 1st Law
Net forces
Newton’s 2nd Law
Newton’s 3rd Law
Friction

— Chapter 5 — Work and Energy
work
types of energy
conservation of energy
power

— Chapter 6 — Momentum and Collisions
momentum and impulse
conservation of momentum
types of collisions

— Chapter 7 — Rotational Motion and the Law of Gravity
measuring rotational motion
rotational kinematics equations
centripetal force and acceleration
gravitational forces

Chapter 8 will not be included on the first semester exam.

Honors Physics 2008-2009 Mr. Strong
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Semester Exam Equation Sheet

This is a slightly reduced copy of the equation sheet that you will receive with the semester exam.

Honors Physics — 1st Semester Final
‘I Constants and Equations

Kinematics
Linear

d=v,At

d =§(v, +vf)At

d =vAt+pa(At)’

Vi =V, +aAt

vi =v? +2ad

d, =v,At

d, =v,At+%a, (At)2

v, =vsing
v, =Vvcoséd

Kinematics
Rotational

0=aw,At
0=wAt+¥a(At)
9=}/2(a)i +a)f)At

o = o, +alAt

ol = o’ + 206

Dynamics

Linear

> F=ma
F

g =Mmg

F, =F,cos@

F,=F,sin
Fe=uky
u=tané

spring =

6

—kx

Dynamics

Circular

2zr
V=

Dynamics
Rotational

21=Ia

| =mr

point mass

2

Work, Power, Energy
Linear

W = Fdcosé
PE, =mgh

PE e = & kX?
KE = 3 mv?
APE + AKE+W =0

w

=—=Fv
At

Work, Power, Energy
Rotational

W =176
KE = % l @’

P=rw

Momentum
Linear

P=mv
MyVy; +MyVyp =MyVy e +MyVye

FAt = mAv

Rotational
L=lw

Constants
g=10.7,
G=6.67x10™" N-gmj

ke

c=3.00x10°2

K =9.00x10° M

Note that some equations may be slightly different than the ones we have used in class, the sheet that you receive
will have these forms of the equations, it will be up to you to know how to use them or to know other forms that you

are able to use.
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